BACKTALK

How Much for the Elephants?

It’s a weitd profession we have chosen for

a living, right? I mean, after all, we work in

a profession that considers a millisecond a

very long time, and we consider a 128MB

USB thumb drive (which, after all, holds

almost 100 1.44MB floppies) totally obso-

lete ($9.95 on sale at a local computer store
over Christmas). Ours is a profession where
new computer languages come and go year-
ly, yet COBOL, one of the most commonly
used programming languages in the world,

still remains a language standardized in 1960

but with its roots embedded in the eatly

1950s (making it older than mel).

I have been teaching computer science
for more than 30 years (first as a teaching
assistant in 1974 at the University of Central
Florida), starting back when there was bare-
ly a discipline known as software engineer-
ing'. While some things in the field of soft-
ware engineeting come and go, some #uths
need to be relearned by each generation.

1. No programming language ever devel-
oped will make it the least bit difficult to
write a hortible program?!

2. You really can’t complete a project until
you know the requirements.

3. The first set of requirements is almost
never the right requirements.

4. Neither are the second, third, ot proba-
bly the fourth.

5. The final set of requirements isn’t.

6. No matter how good a coder you are,
you need a design.

7. Code that is so simple it can’t go wrong
— will.

8. There is always one error that error-
checking routines will miss.

9. No matter what the problem is, it’s usu-
ally management.

10. No matter how simple it is — you have to
test it.

11. Everybody else writes code that needs
testing. They say the same about you.

12. Almost any shortcuts you take to speed
up the project make it take longer.

13. It’s always going to take longer (and cost
more) than you plan, even when you
take, “It’s always going to take longer
(and cost more) than you plan” into
account.

No getting around it — what we do for a
living is hard. No. 13 is particularly difficult.

How long does it take? How much will it
cost? Even the most experienced developers
are often so far off with their initial esti-
mates.

Back in college, you never really knew
how long a particular programming assign-
ment was going to take. Some that appeared
really easy turned out to be really hard
(debugging pointers almost a/vays involved
more work than you thought). And, some
jobs that appeared to be really hard turned
out to take almost no time at all (the guick
sort took what, about 10 lines of code?)

The roots of cost (and time) estimation
go back a long way. I am reasonably sure
that Hannibal, as he was planning to cross
the Alps in 219 B.C. during the Second
Punic War, was somehow thinking of the
incremental cost of each additional ele-
phant. It is interesting to note that the cross-
ing of the Alps with elephants, the event
that Hannibal is so famous for, was not real-
ly a success. He started out with 34 ele-
phants, but lost many of the elephants on
the crossing, and all but one were dead by
the end of the Battle of Trebbia’.

It is also interesting to note that
Hannibal, while winning important battles,
was beset by political jealousies at home, and
this eventually proved his undoing, Because
he was unable to get the necessary equip-
ment and personnel, he was not able to take
advantage of opportunities and his victories
turned into a failure’. I could easily draw
parallels between Hannibal and many other
modern-day software project managers
(especially the political jealousies), except for
the fact that at around age 70, Hannibal
committed suicide rather than face humilia-
tion at the hands of his enemies (we offer
early retirement as an option).

Hannibal is famous for the elphant cross-
ing, yet the elephants proved to be of limit-
ed usefulness during the actual war. What
caused Hannibal’s eventual downfall was
more simplistic — siege equipment (hard-
ware) and people — are basic factors in cost
estimation. Would you rather be famous, or
succeedr If you want to be famous, see if
you can convince 34 elephants to help you
code your project in Visual C++. If you
would rather succeed, why not have an accu-
rate estimate of costs?

For one final comment on cost estima-
tion, I would like to add that it is obviously
a long-standing tradition to mock those
whose projects fail due to a lack of cost esti-
mation. In fact, such mockery of those
committing cost-estimation failures is reli-
ably documented:

For which of you, desiring to build a
tower, does not first sit down and
count the cost, whether he has
enough to complete it? Otherwise,
when he has laid a foundation, and is
not able to finish, all who see it begin
to mock him, saying, “This man
began to build, and was not able to
finish®.”

When your management suggests that
cost estimation has been ordained from on
high, you thought they just meant the
Pentagon, right?

Hope to see you at SSTC 2005. It’s well
worth the cost!

— David A. Cook, Ph.D.

Senior Research Scientist

The AEgis Technologies Group, Inc.
dcook@aegistg,com

CanYou BACKTALK?

Here is your chance to make your
point, even if it is a bit tongue-in-
cheek, without your boss censoring
your writing. In addition to accepting
articles that relate to software engineer-
ing for publication in CROSSTALK, we
also accept articles for the BACKTALK
column. BACKTALK articles should
provide a concise, clever, humorous,
and insightful perspective on the soft-
ware engineering profession or indus-
try or a portion of it. Your BACKTALK
article should be entertaining and
clever or original in concept, design, or
delivery. The length should not exceed
750 words.

For a complete author’s packet
detailing how to submit your
BACKTALK atticle, visit our Web site at
<www.stsc.hill.af.mil>.

1. For you purists, the NATO Science Committee sponsored two conferences on software
engineering in 1968 and 1969, which many feel gave the field its initial boost. Many also
believe these conferences marked the official start of the profession. The term software engi-
neering has been used since the late 1950s. See <http://en.wikipedia.org/wiki/

History_of_software_engineering>.

2. I 'make no claim as to the origina]ity of these #ruths. No. 1, for example, comes from “There
does not now, nor will there ever, exist a programming language in which it is the least bit 5.

April 2005

Bl

hard to write bad programs,” a quote by Lawrence Flon in “On Research in Structured
Programming,” SIGPLAN Notices 10:10 (Oct. 1975). This truism is proved again and
again as newer and newer languages are developed.

3. See <wwwbarca.fsnet.co.uk/elephants.htm>.

See <www.carpenoctem.tv/military/hannibal.html>.

The Bible. Luke 14:28. Revised Standard Version.

www.stsc.hillaf.mil 35

